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Correspondence between cerebral glucose
metabolism and BOLD reveals relative power and
cost in human brain

Ehsan Shokri-Kojori® ', Dardo Tomasi® !, Babak Alipanahi® 2, Corinde E. Wiers® !, Gene-Jack Wang® ' &
Nora D. Volkow® '3

The correspondence between cerebral glucose metabolism (indexing energy utilization) and
synchronous fluctuations in blood oxygenation (indexing neuronal activity) is relevant for
neuronal specialization and is affected by brain disorders. Here, we define novel measures of
relative power (rPWR, extent of concurrent energy utilization and activity) and relative cost
(rCST, extent that energy utilization exceeds activity), derived from FDG-PET and fMRI. We
show that resting-state networks have distinct energetic signatures and that brain could be
classified into major bilateral segments based on rPWR and rCST. While medial-visual and
default-mode networks have the highest rPWR, frontoparietal networks have the highest
rCST. rPWR and rCST estimates are generalizable to other indexes of energy supply and
neuronal activity, and are sensitive to neurocognitive effects of acute and chronic alcohol
exposure. rPWR and rCST are informative metrics for characterizing brain pathology and
alternative energy use, and may provide new multimodal biomarkers of neuropsychiatric
disorders.
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ARTICLE

he human brain has markedly complex and diverse struc-
tural characteristics that have evolved in accordance with
the functional specialization of brain regions!. Notably,
larger brain mass, indicating higher cognitive capacity, has been
associated with higher energetic cost across species?. In this
respect, differences in regional morphometry, axonal and den-
dritic density, glia-to-neuron ratio, neurotransmitter distribution,
and active metabolic pathways, have led to different functional
outcomes for different brain regions, including variations in
baseline glucose metabolism®* and differences in neuroglial
activity levels>0. It has been shown that regional glucose meta-
bolism is coupled with activity levels at rest’8 and task condi-
tions’~11. In this relation, indirect measures of neuronal activity,
such as functional magnetic resonance imaging (fMRI) measures
of functional connectivity!>13 or magnetic resonance spectroscopy
measures of glutamatergic function'#, have been associated with
regional brain glucose metabolism, wherein high and low neuronal
activity demand were associated with high and low metabolic
supply, respectively. Compelling evidence also indicates that brain
regions may differ in their activity demand and metabolic supply
associations!®. For example, glucose metabolism (brain’s main
energy supply) may exceed neuronal activity demand when less
efficient glucose metabolic pathways, such as aerobic glycolysis,
are favored in a given region compared to the rest of the brain!®.
Contrastingly, glucose metabolism may fall behind neuronal
demand when relative to other regions, there is more reliance on
the Krebs cycle, or when alternatives to glucose such as ketone
bodies are metabolized as substrates for energy generation!”>18,
Emerging evidence suggests that the coupling between neu-
roglial demand and energy supply entails a bidirectional asso-
ciation!®; however, the spatiotemporal dynamics of these
associations remain to be further explored. Variations in how
energy is supplied (and metabolized) in different brain regions
(spatially)?® and under different stimulation and physiological
conditions (temporally)?! are of high relevance in our under-
standing of brain physiology?2, development20, cognitive abil-
ities?3, and neuropsychiatric disorders?%. There are marked
regional differences in glucose metabolism®2° and in fMRI
measures of brain activity®?%%7 during resting state that are
positively associated across regions!?!3. However, without
accounting for underlying brain activity, regional differences in
glucose metabolism are hard to interpret. Interestingly, the level
of correspondence between glucose metabolism and neuroglial
activity has been considered as a marker of functional speciali-
zation!%, and could be helpful for inferring alternative energy use
vs. activation of different metabolic pathways. Here we propose
an approach to quantify match and mismatch between measured
metabolic supply and the observed level of activity across the
brain and assessed whether this quantification is relevant for
studying distinct energetic characteristics of brain regions and
networks. For this purpose, we measured cerebral metabolic
rate of glucose (CMRgle, indexed by!8F-flurodeoxyglucose;
fluorodeoxyglucose-positron emission tomography (FDG-PET),
see Methods) and synchronous fluctuations in the blood oxyge-
nation level dependent (BOLD; measured by fMRI and indexed
by local functional connectivity density: IFCD, see Methods)
during resting state. We studied two main (unit-free and gen-
eralizable) dimensions of associations. The first dimension cap-
tured the positive association between glucose utilization and
neuroglial activity and was labeled relative power (rPWR), which
represented the level of concurrent metabolic need and observed
activity, relative to the rest of the brain. The second dimension
captured the deviation between glucose utilization and neuroglial
activity and was labeled relative cost (rCST), which represented
the extent to which glucose metabolic needs exceed (or fall
behind) the observed activity, relative to the rest of the brain. As

in principal component analysis, when there is complete corre-
spondence between measured neuroglial activity and glucose
utilization across regions, all the common variance will be
accounted for by the rPWR dimension. But, more deviation
between  observed  neuroglial activity and  glucose
utilization!6-20:21,28 (je., disproportional neuroglial activity and
glucose utilization) across regions would result in higher variance
accounted for by the rCST dimension (Fig. 1, see Methods).

Here we perform a series of experiments and analyses in two
independent cohorts. In cohort-1 (n =28 healthy participants)
with high-resolution FDG-PET and fMRI, we compute voxelwise
measures of rPWR and rCST. We test the hypothesis that dif-
ferent brain networks have distinct rPWR and rCST signatures.
We use this characterization of the brain’s IFCD-CMRglc
dynamics (indexing important components of neuronal activity
demand and metabolic supply) and classify the brain into major
segments based on rPWR and rCST. We show the generalizability
of rPWR and rCST to alternative measures of metabolic supply
(i.e., cerebral blood flow: CBF) and measures of neuronal activity
(i.e., fractional amplitude of low-frequency fluctuations: fALFF).
We also assess effects of temporal signal-to-noise ratio (tSNR)
and brain morphometry on rPWR and rCST. In cohort-2 (n=
40) with FDG-PET and fMRI, we test the sensitivity of rPWR and
rCST to acute and chronic alcohol exposure, which affect brain
glucose metabolism®2%3% and neuronal activity31:32, in light
drinkers (LDs, n=24) and heavy drinkers (HDs, n=16). We
propose multimodal measures of rfPWR and rCST to study
regional variations in the correspondence between glucose
metabolism and measures of functional activity, with potential
implications for characterizing neuropsychiatric diseases. Please
refer to Table 1 for the list of acronyms.

Results

Voxelwise rPWR and rCST. Spatial distributions of IFCD and
CMRglc are highlighted in Fig. la-c and Supplementary Figs. 1a
and 2, delineating regional variability in these measures while
showing an overall positive association between IFCD and
CMRglc across the brain regions (cohort-1, n = 28). To quantify
the regional differences in the coupling between IFCD (indexing
synchronous BOLD fluctuations and related to activity demand)
and CMRglc (indexing glucose metabolic supply), we defined
measures of ’PWR and rCST. While rPWR captured the level of
concurrent IFCD and CMRglc, rCST captured the mismatch
between IFCD and CMRglc, relative to the rest of the brain. In a
two-dimensional map of (mean-variance-normalized) 1FCD-
CMRglc (Fig. le), we performed an orthogonal transformation
with a counterclockwise 7/4 (45°) rotation of axes (Fig. le; see
Methods) and defined an rPWR axis along which the positive end
indicated high CMRglc associated with high IFCD and the
negative end indicated low CMRglc associated with low IFCD.
Perpendicular to the rPWR axis, we define an rCST axis (Fig. le)
along which the positive end indicated high CMRglc associated
with low IFCD and the negative end indicated low CMRglc
associated with high IFCD. Fig. le shows a hypothetical model
with relatively equal distribution of voxels along the four iden-
tified quadrants and with no apparent association between the
measures. A positive correlation between IFCD (measure of
activity) and CMRglc (measure of metabolic supply) indicates
that more voxels are associated with high- and low-rPWR
quadrants than high- and low-rCST quadrants. Voxels con-
tributing the most to rPWR and rCST variability (in the hypo-
thetical model) are highlighted in Fig. 1d, f and Supplementary
Fig. 3, respectively. We found marked regional differences in
rPWR and in rCST (Fig. 1g, h and Supplementary Fig. 3) that
were driven by match and mismatch between IFCD and CMRglc
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Fig. 1 Voxelwise relative power (rPWR) and relative cost (rCST) (cohort-1, n = 28). a Average logarithm of local functional connectivity density (log(IFCD))
map for cohort-1 (n = 28) subjects highlighting precuneus and visual cortex as the most locally connected regions. b COMET (connectivity-metabolism)
map. A two-dimensional histogram of log(IFCD) versus cerebral metabolic rate of glucose (CMRglc) highlighting the frequency of log(IFCD) and CMRglc
association pairs (r=0.44, p<0.000071, 139,269 voxels). Red to blue indicate high to low-frequency counts, respectively. ¢ Average CMRglc map
highlighting precuneus and lateral frontal lobe as the most metabolically demanding regions. d-f rPWR and rCST were calculated by a z/4 (45°) rotation
along (mean-variance normalized) log(IFCD) and CMRglc axes. e A hypothetical presentation of (mean-variance normalized) activity demand versus
metabolic supply (not to be confused with part b shown without mean-variance normalization) with each circle representing one brain voxel. Yellow-
colored voxels correspond to higher rCST, blue to lower rCST, red to higher rPWR, and green to lower rPWR. For a representative voxel v; (dark gray circle),
rPWR; and rCST; are shown on the plot. For v; rPWR is negative and rCST is positive. For visual demonstration purposes, voxels contributing the most to
rPWR variability (d) and rCST variability (f) are highlighted. For this purpose, highlighting was performed by multiplying the radius of each voxel (in polar
coordinate system) by its corresponding absolute rPWR (d) or absolute rCST (f). Group-average rPWR (g) and rCST (h) maps. Note the color scale in
g resembles that used for the hypothetical voxels along the rPWR axis in d and the color scale in h resembles that used for the hypothetical voxels along
the rCST axis in f. Also see Fig. 2 (and Supplementary Table 8) for regional differences

(Fig. 1a, c). Regions with higher rPWR included major sections of  parahippocampal gyrus, and ventral anterior and lateral nuclei of
visual, parietal, and frontal cortices, putamen, caudate, and the thalamus had lower rPWR (Fig. 1g, Supplementary Table 1).
medial-dorsal nucleus of the thalamus (Fig. 1g, Supplementary =~ Many brain regions with higher rPWR had higher rCST (Fig. 1g,
Table 1). Conversely, parts of the anterior and posterior cerebellar  h). Higher rCST regions included inferior, middle, superior
lobes, medial-frontal, and precentral gyri, hippocampus and frontal, precentral, and postcentral gyri, as well as insula,
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Table 1 List of acronyms used in the text and supplementary
material

Acronym Description

ABND average between network distance
AWND average within network distance

ALC alcohol (condition)

ALFF amplitude of low-frequency fluctuations
ANOVA analysis of variance

BOLD blood oxygenation level dependent

CB cerebellum

CBF cerebral blood flow

CcM center of mass

CMRglc cerebral metabolic rate of glucose
COMET connectivity-metabolism

fALFF fractional amplitude of low-frequency fluctuations
FDG 18F-flurodeoxyglucose

fMRI functional magnetic resonance imaging
FWE family wise error

HD heavy drinker

ICC intraclass correlation

LD light drinker

IFCD local functional connectivity density

M mean

MNI Montreal neurological institute

MV medial visual

NSI network segregation index

PC principal component

PET positron emission tomography

PLC placebo (condition)

PWI perfusion-weighted imaging

rCST relative cost

ROI region of interest

rPWR relative power

SD standard deviation

TE echo time

TR repetition time

tSNR temporal signal to noise ratio

putamen, and middle, and superior temporal gyri. In contrast,
caudate, cerebellum (CB), limbic lobe, midbrain, pons, and ven-
tral anterior and lateral thalamic nuclei had lower rCST (Fig. 1h,
Supplementary Table 2).

Resting state network and individual differences. Figure 2a, b
shows individual differences in IFCD and CMRglc within 10
predefined resting-state networks®3. Plotting these values against
each other showed low segregation of these networks when
considering individual differences (Fig. 2c). Similarly, we com-
pared individual differences in rPWR and rCST of these 10
networks (Fig. 2d, e). There was a main effect of network for both
rPWR (F(9, 243) = 197.86, p<0.0001) and rCST (F(9, 243) =
203.51, p <0.0001) measures. Specifically, all network pairs had
either significantly different rCST or significantly different rPWR
(prwe < 0.05, Sidak), except the left and right frontoparietal net-
works (ppwg > 0.7, Sidak). In addition, differences in rPWR or
in rCST in some networks were not significant (e.g., rPWR
between medial-visual (MV) and default mode networks or rCST
between the occipital pole (OP) and CB networks; pgwg > 0.7,
Sidak). Highest rPWR corresponded to the MV and default mode
networks, whereas lowest rPWR corresponded to the CB network.
The left and right frontoparietal networks had the highest rCST,
whereas the MV and CB networks had the lowest rCST. Since
rPWR and rCST were calculated from mean-variance normalized
IFCD and CMRglc, both measures contributed to variance in
rPWR and rCST (see Methods). In addition, all networks had

significantly different rPWR compared to rCST (p < 0.02, paired
t-test).

Network segregation analysis. Figure 2f shows subject-level
averages of rPWR and rCST when plotted against each other,
which in contrast to Fig. 2c¢, highlighted consistency of rPWR
and rCST values across subjects for each network relative to other
networks. This resulted in better segregation of networks based
on rPWR and rCST properties than IFCD and CMRglc measures
(Fig. 2¢, f). We quantified the level of segregation of brain net-
works in the two spaces (i.e., IFCD-CMRglc versus rPWR-rCST)
using a network segregation index (NSI). Specifically, in a given
two-dimensional space and for each brain network, NSI was
defined as the ratio of the average of between network distances
to the average of within network distances (see Methods). As
expected, in the rPWR-rCST space we found significantly higher
NSIs (NSI: M =4.34, SD =146, Fig. 2f) than in the IFCD-
CMRglc space (NSI: M =1.07, SD = 0.66, Fig. 2c) across the 10
networks (p = 0.002, Wilcoxon's signed rank test).

k-means clustering. There were notable differences in regional
distributions of rPWR and rCST (Fig. 3a). The largest differences
between rPWR and rCST maps were in the visual cortex, which
despite having high rPWR had low rCST, while many temporal
and limbic regions showed the opposite pattern (Supplementary
Table 3). Variations in the regional rPWR and rCST measures
motivated segmenting the brain into groups of voxels, each with
most similar rPWR and rCST than the rest of the brain. A k-
means clustering approach identified four reproducible clusters of
voxels (see Methods) from the across-subject average of rPWR
and rCST measures (Fig. 3b, ¢ and Supplementary Fig. 4). The
clusters corresponded to: higher rPWR, lower (to intermediate)
rCST (red); intermediate rPWR, higher rCST (yellow); lower
rPWR, intermediate rCST (blue); and lower rPWR, lower rCST
(green) regions (Fig. 3b-d). Projection of these clusters into the
across-subject average of IFCD-CMRglc map (Fig. 3c) showed
that high IFCD and high CMRglc corresponded to the red cluster,
whereas the other three clusters showed low (green), intermediate
(blue), and high (yellow) CMRglc for relatively low IFCD levels,
respectively. Voxels corresponding to each of the clusters pri-
marily highlighted sensorimotor (blue), cerebellar-limbic (green),
visual (red), and frontoparietal (yellow) regions (Fig. 3d), but
these segments also included a range of other regions throughout
the brain (Supplementary Tables 4-7).

Generalizability and effects of tSNR and brain morphometry.
We further assessed whether rPWR and rCST are generalizable to
alternative measures of neuronal activity (i.e., fALFF) and meta-
bolic supply (ie, CBF with perfusion-weighted ima-
ging (PWI)) and studied the extent to which they are sensitive to
measurement noise (tSNR) and brain morphometry. In sum,
there were high correlations between regional differences in
CMRglc and CBF (PWI) and between regional differences log
(IFCD) and fALFF (Supplementary Fig. 5). There was excellent
agreement between rPWR based on IFCD-CMRglc, and rPWR
based on fALFF-CBF (PWI) (Supplementary Fig. 6). Same effect
was observed for rCST (Supplementary Fig. 7). Across regions,
rPWR and rCST did not amplify the effects of tSNR and brain
morphometry on IFCD and on CMRglc (Supplementary Tables
8-12). See Supplementary Results for more details.

Effects of alcohol on regional rPWR and rCST. We assessed the
sensitivity of rPWR and rCST metrics to acute and chronic
alcohol exposure in a separate cohort (n=40; see Methods).
Figure 4a-d shows the connectivity metabolism (COMET) maps
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Fig. 2 Local functional connectivity density (IFCD), cerebral metabolic rate of glucose (CMRglc), relative power (rPWR), and relative cost (rCST) of brain
networks and individual differences (cohort-1, n=28). a, b Within-subject averages (28 circles) and between-subject average (thick line) of IFCD

and CMRglc for each of 10 resting-state networks33 including medial visual (MV), occipital pole (OP), lateral visual (LV), default mode (DM), cerebellum
(CB), sensorimotor (SM), auditory (AD), executive control (EC), right and left frontoparietal (RFP and LFP) networks. € Within-subject averages of IFCD
and CMRglc plotted against each other (each circle represents one participant) for the networks shown in a, b. The network colors in € match those shown
ina, b. d, e Within-subject averages (28 circles for 28 participants) and between-subject average (thick lines) of rPWR and rCST for each of the 10 resting-
state networks shown in parts a, b. f Within-subject averages of rPWR and rCST plotted against each other for the networks shown in d, e. The network

colors in f match those shown in d, e

highlighting alcohol-related changes in IFCD and CMRglc
between groups (HD versus LD) and conditions (alcohol (ALC)
versus placebo (PLC)). We also computed rPWR and rCST for
each participant and condition. Acute alcohol exposure (Fig. 4e)
significantly reduced rCST and rPWR in the visual cortex and
increased rPWR in the thalamus (Supplementary Tables 13, 14).
Chronic alcohol exposure (Fig. 4e) reduced rCST in precuneus
(posterior ventral), medial frontal regions, insula, putamen, and
CB, and increased rCST in the visual cortex (Supplementary
Table 15). Chronic alcohol reduced rPWR in the red nucleus,
pons, various thalamic nuclei, and in areas within superior/medial
frontal and cingulate gyri and precuneus (not visible in Fig. 4e),
but increased relative rPWR in the CB (posterior lobe) and pre-
cuneus/cuneus junction (Supplementary Table 16).

Behavioral association with rPWR and rCST. In cohort-2, for
the subjective measures showing effects of Alcohol, we calculated

a subjective principal component (PC, see Methods) and assessed
its association with regional IFCD, CMRglc, rPWR, and rCST in
both groups. In ALC, we only found significant negative asso-
ciations between rPWR in insula, middle, and inferior temporal
gyri (in the right hemisphere) and the subjective PC (ppwg < 0.01,
Supplementary Table 17). While HD performed worse in a range
of cognitive tasks, individual differences in these measures in HD
(cognitive PC, see Methods) were only significantly associated
with rCST in the right inferior parietal lobule (pgwe <0.01,
Supplementary Table 18).

Alcohol and brain energy states. We characterized the extent to
which acute and chronic alcohol altered the brain-wide dis-
tribution of rPWR and rCST as well as the distribution of their
associations. Despite the zero-mean and unit-variance of whole-
brain rPWR and rCST for each participant and condition, ALC
relative to PLC significantly increased the skewness (increased
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Fig. 3 Brain segmentation using relative power (rPWR) and relative cost (rCST) (cohort-1, n = 28). a rCST versus rPWR contrast showing precuneus and
visual cortices with significantly lower rCST than rPWR, whereas superior frontal and insular cortices showed higher rCST than rPWR. For highlighting the
extreme differences, we used a conservative threshold of ppwe < 0.01 at the voxel level (Jt| > 6). At the conventional threshold (ppwe < 0.01, cluster-size
corrected), majority of the cortex (54%) showed differences in rCST versus rPWR (see Supplementary Table 3). b Scatter plot of rPWR versus rCST for all
the brain voxels, showing the four k-means clusters with different colors. Numbers represent percentage of voxels falling within clusters. ¢ Same clusters
projected into the space of local functional connectivity density (IFCD) and cerebral metabolic rate of glucose (CMRglc). The thick gray lines mark the
average of log(IFCD) and average of CMRglc with the number in each quadrant showing percentage of voxels falling within that quadrant. These quadrants
are defined in Fig. 1e. It is important to note that having a higher percentage of voxels associated with the high- and low-rPWR quadrants is consistent with
log(IFCD) and CMRglc being positively correlated (see Fig. 1b). d The four k-means clusters in b on a surface rendering of the brain

bias) of rPWR toward positive values (F(1, 38) =7.41, p=0.01),
and decreased the kurtosis (increased uniformity) of rCST (F(1,
38) =7.33, p=0.01) across subjects. We also studied how acute
and chronic alcohol affects the distribution of voxels along the
four major energy states of rPWR and rCST that were defined
relative to the whole-brain averages of rPWR and rCST (Fig. 4g).
Acute alcohol reduced the number of (gray matter) voxels asso-
ciated with lower rPWR and lower rCST state in both groups (F
(1, 24) =7.81, p=0.01). While the opposite pattern was seen in
the high-rPWR, high-rCST state, this effect was not significant (F
(1, 24)=3.14, p=0.089) and was predominantly driven by
changes in the skewness of rPWR. LD had higher number of
voxels associated with high-rPWR, low-rCST state than HD (F(1,
24) = 15.44, p <0.001), but there was a trending interaction with
Alcohol factor (F(1, 24) =4.01, p =0.057) (Fig. 4g).

Discussion

Here we used CMRglc (indexing brain’s main energy supply) and
IFCD (indexing aspects of neuroglial activity) and defined novel
measures of rPWR (extent of concurrent CMRglc and IFCD) and
rCST (the extent to which CMRglc leads IFCD) to study the
variations in the coupling between CMRglc-IFCD across brain
regions. We showed that brain regions can be classified into

major segments with distinct fPWR and rCST characteristics
(Fig. 3d) and that resting-state networks differ in their rPWR and
rCST (Fig. 2d, e). Specifically, the MV and default mode networks
had the highest rfPWR, whereas the CB network had the lowest
rPWR. Frontoparietal networks had the highest rCST, whereas
the MV and CB networks had the lowest rCST. When con-
sidering individual differences, we found that brain networks
were more segregated based on rPWR and rCST (Fig. 2f) than
based on IFCD and CMRglc (Fig. 2c¢), further supporting the
relevance of our approach for studying brain functional specia-
lization. Across cortical regions, IPWR and rCST were not con-
sistently associated with cortical thickness (Supplementary
Table 9) and cortical distance (Supplementary Table 10) as were
IFCD and CMRglu, suggesting that each of rPWR and rCST
measures is differently related to anatomical characteristics of
different brain regions. Additionally, we found that rPWR and
rCST indices were distinctly sensitive to the effects of acute and
chronic alcohol exposure on the brain and behavior.

There were notable differences in regional and network-level
rCST (Figs. 1h, 2e). Higher rCST could be attributed to the use of
less efficient (but fast) glucose metabolic pathways (e.g., aerobic
glycolysis)!®20, or even a higher glia-to-neuron ratio in the neo
cortex34. In fact, our estimate of regional rCST (Fig. 1h) had good
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correspondence with previously reported distribution of aerobic
glycolysis (accounting for about 10% of glucose metabolized by
the adult brain)!®, which highlights dorsal-medial frontal, pre-
cuneus, posterior cingulate, and lateral-frontal regions (see Sup-
plementary Table 2). Many instances in the literature attribute
higher energetic cost to high regional glucose metabolism343°.

Here we provide an approach to quantify energetic cost based on
regional glucose metabolism while accounting for underlying
activity relative to the rest of the brain (rCST), and expand on
prior research that has assessed metabolic cost at the neuronal
level®®. Lower rCST in regions such as the CB (Fig. 1h and
Supplementary Table 2) could be attributed to a higher regional
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Fig. 4 Effects of acute and chronic alcohol (cohort-2, n=40). a-d COMET (connectivity metabolism) map highlighting the relative distribution of four
regions of interest32 for light drinkers (LDs, n = 24) under placebo (PLC) condition (a) or alcohol (ALC) condition (b), and for heavy drinkers (HDs, n = 16)
under PLC (c) or ALC (d). e ALC versus PLC contrast for relative cost (rCST, left) and relative power (rPWR, right). f HD versus LD contrast for rCST (left)
and rPWR (right) indices (prwe < 0.01, cluster-size corrected). No significant interaction effect was found. g Statistical analysis of changes in the occupancy
of different energy states because of acute (PLC versus ALC) or chronic (LD versus HD) alcohol exposure. Repeated-measures analysis of variance was
performed to study Group and Alcohol effects on the 25 frequency bins of each quadrant of rPWR and rCST. Note that average rPWR and rCST is always
zero. The bars show average of 25 bins within each quadrant normalized by the number of subjects for each group (see Supplementary Fig. 10 for more

details). ** indicates correction for multiple comparisons. SE: Standard Error

proportion of oxidative phosphorylation to aerobic glycolysis!® or
use of energy sources other than glucose such as ketone bodies.
Notably, the CB shows the highest levels of acetate metabolism
(when plasma acetate levels are increased)3? and also has the
lowest glia-to-neuron ratio, both of which could contribute to its
low glucose rCST37. Among the resting-state networks, the MV
and default mode networks showed the highest rPWR (Fig. 2d).
While both networks are among the most active resting-state
networks (e.g., as found by independent component analysis)38,
higher rPWR in these regions supported that these networks are
also metabolically demanding. We found that all the tested rest-
ing networks®? could be differentiated based on either rPWR or
rCST measures (Fig. 2d-e; prwg < 0.05, Sidak). This suggests that
functional resting-state networks have distinct energetic sig-
natures that are, in principle, consistent with their functional
specialization.

The contrast analysis indicated that most of the cortex had
different rCST compared to rPWR (approximately 54% of gray
matter voxels, prwg < 0.01, cluster-size corrected). However, the
most pronounced differences were in the visual cortices with
higher rPWR than rCST and in the limbic and temporal regions
with higher rCST than rPWR (see Fig. 3a and Supplementary
Table 3). There were also notable differences in rPWR and in
rCST between regions (Fig. 2, Supplementary Table 8). Significant
differences in regional rPWR indicated that brain regions vary in
the level of concurrent activity and metabolism at rest (Fig. 1g,
Supplementary Fig. 3). There is evidence that glutamatergic sig-
naling is a significant contributor to both neuronal firing and
regional glucose metabolism at rest3®40, thus we postulate that
variations in resting glutamate release could contribute to dif-
ferences in rPWR among brain regions. The data-driven k-means
clustering approach showed that the brain regions could be
divided into major segments based on their rPWR and rCST. The
frontoparietal segment (yellow; Fig. 3b, d) is composed of regions
primarily associated with higher-order cognitive abilities (e.g.,
fluid intelligence)*!. These regions are metabolically costly, which
according to their functional needs may involve the use of faster
(but inefficient) metabolic pathways such as aerobic glycolysis or
might reflect greater engagement (or density) of supporting glial
cells. It has also been postulated that aerobic glycolysis plays an
important role in synaptic plasticity and remodeling?’. For
example, the hippocampal formation is among the regions with
the highest synaptic plasticity*>. While the hippocampus had
significantly lower rCST and rPWR relative to the rest of the
brain (Supplementary Tables 1, 2), it had higher rCST than rPWR
(Fig. 3a, Supplementary Table 3), which is consistent with the
energetic needs of the hippocampus to support high rates of
neurogenesis and synaptic plasticity*>43.

Despite the growing interest in multimodal brain segmentation
in health?* and disease?>, most approaches have focused on iden-
tifying regional boundaries using structural similarities and anato-
mical and functional connectivity patterns?®. From a data-driven
perspective, here we expanded on prior studies by incorporating
information from brain energetics and classified the brain into

major segments based on rPWR and rCST. We show that areas
related to visual processing had higher rPWR but lower rCST (red
segment; Fig. 3b, d). This observation is consistent with the visual
system being highly active, but also relying on efficient oxidative
metabolism resulting in a relatively lower rCST4’. In addition, our
data showed that the MV, occipital pole, lateral-visual networks
show increasingly higher rCST and decreasingly lower rPWR,
respectively (Fig. 2d-f, ppwg <0.05, Sidak). Prior work has sug-
gested MV, occipital pole, and lateral-visual networks are associated
with increasingly higher-order cognitive functions, respectively3,
which supports that higher-order functions have higher rCST.
Similarly, increases in rCST were observed from the CB, to sen-
sorimotor, and executive control networks (Fig. 2d—f, ppwg < 0.05,
Sidak), which was consistent with changes from green (cerebellar-
limbic) to blue (sensorimotor) segments in Fig. 3b-d. Our data
suggested that the evolution of networks toward higher-order
functions along a “motor” direction (from CB to sensorimotor
and executive control) or along a “visual” direction (from MV to
occipital pole and lateral-visual) is associated with consistent
increases in rCST (Fig. 2f).

It is worth noting that rPWR and rCST values are relative to
the rest of the brain with the assumption that CMRglc indexes
glucose energy supply (among other energy substrates) and that
synchronous regional fluctuations in the BOLD signal are pro-
portional to local activity, each capturing a fraction of energy
expenditure and neuroglial activity, respectively. Using CBF
(PWI) and fALFF as alternative indices of metabolic supply and
neuronal activity resulted in rfPWR and rCST that had a strong
agreement with those obtained with CMRglc and IFCD (Sup-
plementary Results, Supplementary Figs. 6, 7), further supporting
the generalizability of these metrics (see also Supplementary
Discussion on IFCD and fALFF). However, we cannot rule out
that inherent limitations in PET and MRI imaging (e.g., spatial
heterogeneity in tSNR) could to some extent affect regional dif-
ferences in rPWR and rCST. We observed that rPWR and rCST
do not appear to amplify the effects of tSNR in fMRI and FDG-
PET modalities (Supplementary Results, Supplementary
Tables 11, 12, and Supplementary Fig. 8). Visual networks
showed significant differences in rCST and in rPWR (Fig. 2d, e),
yet they had mid-to-high range tSNR in both modalities (Sup-
plementary Tables 11, 12), suggesting that differences in rPWR
and rCST in visual regions are not primarily related to mea-
surement noise. Morphometric properties of brain regions are
expected to be consistent with their functional and energetic
needs*8. We found that average cortical thickness and cortical
distance (see Methods) in several regions were positively asso-
ciated with rCST and rPWR (p < 0.05, Bonferroni, Supplementary
Tables 9, 10). It could be expected that higher cortical distance (or
thickness) is consistent with greater activity and energetic needs,
particularly for regions with significant remote connectivity.
Interestingly, cortical distance and rCST were associated in
entorhinal, lateral orbitofrontal, and inferior temporal cortices,
which are among regions implicated in Alzheimer’s disease**-0.
Nevertheless, the relevance of these morphological findings
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remains to be determined. Our work is limited to assessing
activity demand and metabolic supply from a static perspective,
but future work should involve studying dynamic changes in
rPWR and rCST due to physiological®! or circadian®? interactions
with brain function, using concurrent imaging of neuronal
activity (e.g., measures of glutamatergic function or IFCD) and
cerebral metabolic supply (e.g., CMRglc or CBF>34),

We found significant regional changes and differences in
rPWR and in rCST due to acute and chronic alcohol exposure
(Fig. 4e-f). We interpreted less regional rPWR in HD (e.g.,
thalamus and medial frontal regions) to reflect toxic effects of
long-term exposure to alcohol on neuronal and glial cells,
leading to reduced activity and glucose metabolism. The
decreases in rPWR with acute alcohol, which were pre-
dominantly observed in the visual cortex, are likely to reflect
disruption of visual processing associated with alcohol
intoxication®°¢ (Supplementary Tables 14, 16). Increases in
rPWR may indicate compensatory phenomena with elevated
activity/metabolism32, for example, during intoxication in the
thalamus, or as a result of chronic alcohol use in the CB and
(posterior medial segment of) precuneus (Supplementary
Tables 14, 16). The visual cortex had the most significant
decreases in rCST during alcohol intoxication, which is con-
sistent with prior studies showing that this brain region had the
largest decrements in glucose metabolism and one of the largest
increases in acetate metabolism during intoxication®39, Less
rCST in cortical and cerebellar regions in HD may indicate
prolonged dependence on ketone bodies®? or glial cell loss>/,
whereas higher rCST of visual areas in HD than LD could
indicate an increased rate of aerobic glycolysis due to repair
mechanisms®® (Supplementary Tables 13, 15). However, future
research is needed to confirm these speculations. Relative to
IFCD, CMRglc, and rCST, less rPWR was associated with
greater subjective experience of alcohol in the insula (Supple-
mentary Table 17), suggesting that concurrent changes in
(BOLD) activity and glucose metabolism in this limbic region
provide relevant markers of subjective alcohol experience>®. We
also found evidence that rCST (relative to IFCD, CMRglc, and
rPWR) in the inferior parietal lobule was positively associated
with performance in cognitive tasks in HDs (Supplementary
Table 18). While activity in parietal regions have been pre-
viously related to intelligence®, our findings suggest that
energetic needs (i.e., rCST) in parietal areas contribute to
individual differences in cognitive performance in HD.

Acute alcohol altered global distribution characteristics of rPWR
and rCST by increasing its skewness towards positive values, where a
larger number of regions showed concurrently high metabolism and
high activity levels. This observation is consistent with an increased
coupling between glucose metabolism and synchronous local activity
for high functioning regions after intoxication. It has been shown
that glial cells, but not neurons, are primarily able to metabolize
acetate®l, thus reliance of glial cells on acetate metabolism after
intoxication could result in a stronger coupling between neuronal
activity and glucose metabolism. Decreased kurtosis of rCST (longer
distribution tails) from PLC to ALC indicated that there were
increases in the number of brain voxels with higher rCST and lower
rCST. This observation is consistent with findings that regional
decreases in glucose metabolism during intoxication are not
homogeneous and reflect, in part, low to high reliance on acetate
metabolism across regions30. Chronic alcohol exposure also altered
the relative distribution of rCST and rPWR (Fig. 3g). We found that
LD had more voxels associated with the higher rPWR and lower
rCST energy state (higher efficiency) than HD, while the opposite
pattern was seen in the higher rCST and lower rPWR state (Fig. 4g).
Despite global decreases in glucose metabolism in HD compared to
LD (Fig. 4a—d), our data indicated that the HD brain is shifted

toward less efficient energetic states (indicated by rPWR and rCST),
but future studies are needed to investigate the mechanisms that
could contribute to this relatively inefficient state of energy utiliza-
tion (including the role of inflammation®2).

The associations between activity demand and metabolic sup-
ply in the brain are important for studying brain function?0-22:23
and diseases?%. In principle, energy demand and supply in the
brain are matched (with certain exceptions such as heat®? or
lactate® production). However, our measures of activity demand
(i.e, IFCD) and metabolic supply (i.e., CMRglc) only capture
specific aspects of demand and supply processes in the brain,
making their mismatch not only possible but also informative.
Conditions such as exposure to alcohol®? or sleep?! are known to
impact brain glucose metabolism due to the use of alternative
sources of energy (e.g., acetate) or changes in active glucose
metabolic pathways (aerobic glycolysis versus oxidative metabo-
lism). However, without accounting for underlying brain activity,
changes in glucose metabolism are hard to interpret. To quantify
the relative changes in the association between two modalities,
here we proposed two novel metrics of rPWR and rCST that are
unit-free and are generalizable to measures of brain activity and
energy supply. These metrics quantify how well two modalities
that measure aspects of activity demand (such as IFCD) and
aspects metabolic supply (such as CMRglc) are concurrently high
or low (i.e., rPWR) and to what extent one exceeds the other (i.e.,
rCST) in a specific region relative to the rest of the brain. From
another perspective, rPWR could be thought of as an index of
concurrent intensity of the two modalities, while rCST is an index
of mismatch between the two modalities. Since rPWR and rCST
are relative, they are not sensitive to global changes in any of the
two modalities (e.g., levels of glucose metabolism as in acute or
chronic alcohol exposure, Fig. 4), and could be useful to map and
track the associations between specific markers of activity
demand and metabolic supply under different physiological
conditions (e.g., sleep), pharmacological states (e.g., alcohol
intoxication), or disease stages (e.g., Alzheimer’s disease). Ana-
lysis of individual differences showed a clear segregation of dif-
ferent brain networks based on rPWR and rCST (Fig. 2f) relative
to IFCD and CRMglc (Fig. 2¢). We found that rPWR and rCST
are robust and generalizable to other measures of activity demand
and metabolic supply (e.g., fALFF and CBF, Supplementary
Figs. 6, 7) and do not appear to amplify the effects of measure-
ment noise on IFCD and CMRglc (Supplementary Tables 11, 12).
Analysis of the whole-brain distribution of rfPWR and rCST
characterized alterations in the IFCD-CMRglc coupling during
acute alcohol exposure and showed that prolonged alcohol use
may shift the brain toward less efficient energetic states. More
importantly, we found that rPWR and rCST (relative to IFCD and
CMRglc) were significantly and distinctly related to behavioral
effects of acute and chronic alcohol exposure, further supporting
their utility for capturing meaningful (and possibly unique)
aspects of brain function. Thus, we propose rPWR and rCST as
new multimodal metrics to study the energetic economy of brain
networks® throughout the lifespan and to monitor the effects of
drugs and diseases on the human brain.

Methods

Participants. Here we report data in two independent cohorts (n = 68 total). In
cohort-1 (NM; n = 28; age = 36 + 12 years; 17 males), we collected high-resolution
resting-state fMRI and CBF (PWI) (two sessions) and FDG-PET (one session) (raw
fMRI and FDG-PET data partly reported®®). Cohort-1 data were collected in
healthy participants at the National Institutes of Health (NIH) with no interven-
tion. Cohort-1 participants provided written informed consent to participate in the
study, which was approved by the Institutional Review Board at the NIH (Com-
bined Neurosciences White Panel). In cohort-2 (n = 40), participants underwent
resting-state fMRI (two sessions)3? and FDG-PET imaging (two sessions)? at the
Brookhaven National Laboratory. Signed informed consents were obtained from
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the participants as approved by the Committee on Research in Human Subjects at
Stony Brook University. Cohort-2 consisted of HDs (1 = 16; age = 34.6 + 9.7 years;
16 males) and LDs (n = 24; age = 32.5 + 6.4 years; 12 males). Each participant was
tested twice under resting state: once during PLC (one fMRI session and one FDG-
PET session) and once during ALC (one fMRI session and one FDG-PET session).
In brief, HD consumed five or more drinks in each day on three or more occasions
per week and reported last use of alcohol within 3 days of the imaging session. The
LD had prior experience with alcohol, but at most consumed one drink in any
given day. Exclusion criteria were: (1) urine positive for psychotropic drugs; (2)
history of alcohol or drug use disorders (except nicotine use for all participants and
alcohol use disorder for HD); (3) present or past history of neurological or psy-
chiatric disorder; (4) use of psychoactive medications in the past month (i.e., opiate
analgesics, stimulants, sedatives); (5) use of prescription (non-psychiatric) medi-
cation(s), that is, antihistamines; (6) medical conditions that may alter cerebral
function; (7) cardiovascular and metabolic diseases; and (8) head trauma with loss
of consciousness of more than 30 min.

Cohort-1 data acquisition. Each participant underwent MRI on two separate days
(with an average of 20.4 days and a median of 8 days apart) and one FDG-PET
scan that was acquired either on the first or second MRI day. The MRI was done on
a 3.0 T Magnetom Prisma scanner (Siemens Medical Solutions, Erlangen, Ger-
many) using a 20-channel head coil. On each MRI day, resting-state fMRI was
collected for 15 min using a single-shot gradient echo-planar imaging sequence
(echo time (TE) = 30 ms, repetition time (TR) = 1.5s) with 3-mm in-plane reso-
lution and 4-mm slice thickness (no gap). The fMRI scan was performed while
participants relaxed with eyes open during the scan (no fixation cross). On each
MRI day, we also collected pulsed arterial spin labeling data using a 3D gradient
and spin-echo sequence (TR/TE = 2300/16.18 ms) with 3-mm in-plane resolution,
3-mm slice thickness (48 slices), bolus duration = 700 ms, inversion time = 1600
ms, and turbo factor = 18 (total acquisition time 4:59 min). Siemens in-line pro-
cessing provided a summarized PWI from four pairs of tagged and untagged
images, which was used as a relative proxy of CBF. For each participant, the
summarized CBF (PWI) map was averaged across the two scan days, except for one
subject with only one available CBF (PWI) scan day. T1-weighted 3D MPRAGE
(TR/TE = 2200/4.25 ms, 1-mm isotropic resolution) and T2-weighted spin-echo
multi-slice (TR/TE = 8000/72 ms, 1.1 mm in-plane resolution, 1.7 mm slice
thickness, 94 slices) pulse sequences were used to acquire anatomical brain images.
In the paper, glucose metabolic supply refers to energy utilization (not to be
confused with glucose delivery) that was indexed by CMRglc estimated by FDG-
PET scans. FDG-PET scan was performed using a high-resolution research
tomography (Siemens Medical Solutions, Knoxville, TN, USA) with ~2.5 mm
camera resolution. Two venous catheters were placed, one to measure the con-
centration of radioactivity from arterialized venous blood and the other one for
radiotracer injection. Prior to tracer injection, a transmission scan was obtained
using cesium-137 to correct for attenuation. '8FDG (8 mCi) was injected intrave-
nously over a period of approximately 1 min. PET emission scans were obtained in
list mode (one image every 10 s) starting immediately after '8FDG injection for 75
min. During the PET imaging procedure, the subjects rested quietly under dim
illumination and minimal acoustic noise. To ensure that subjects did not fall asleep,
they were monitored throughout the procedure and were asked to keep their eyes
open (no fixation cross). A cap with small light reflectors was used to monitor head
movement and to minimize motion-related image blurring. A summary image was
obtained between 35 and 75 min (reconstructed with a 1.23-mm isotropic voxel
size). See Supplementary Methods for details on data preprocessing.

Cohort-2 data acquisition. Each participant was tested twice (on separate days;
maximum 3 days apart): once during ALC and once during PLC in a random
order®. Participants drank alcohol (0.75 g/kg mixed in a caffeine-free diet soda) or
placebo (caffeine-free diet soda) within a 20-min period under single-blind con-
ditions. We used a specialized drinking container with an alcohol-containing lid
that provided the smell of alcohol and delivered the same volume of liquid in both
conditions. Participants were injected with 4-6 mCi of 18FDG about 40 min after
drinking onset. The '8FDG uptake period lasted 35 min during which participants
sat on a chair in a dimly lit room with minimum acoustic noise, were periodically
assessed for the effects of alcohol or placebo, and were continuously monitored to
ensure that they kept their eyes open and did not fall asleep. PET scans were done
using a Siemens ECAT EXACT HR+ tomograph for 20 min, where participants
were positioned using an individually customized head holder. Transmission scans
were obtained using germanium-68 to correct for attenuation. FDG-PET images
were reconstructed using filtered back projection (Hann filter with a 4.9 mm full-
width at half-maximum kernel) that were used for CMRglc estimation. The MRI
scans were acquired between 90 and 120 min of alcohol or placebo administration
following the FDG-PET scan. At the beginning of the MRI scanning session in
ALC, the average blood alcohol concentration was 0.62 mg/ml (SD = 0.27 mg/ml).
Resting-state fMRI data were collected in a 4.0 T Varian/Siemens MRI scan-

ner using a T2*-weighted single-shot gradient-echo planar imaging sequence

(TE =20 ms, TR = 1.6 s) with 3.1-mm in-plane resolution and 4-mm slice thick-
ness (1-mm slice gap). Participants were instructed to remain silent, motionless,
and awake with their eyes open during the 5-min resting-state fMRI (no fixation
cross). See Supplementary Methods for details on data preprocessing.

Behavioral measures. In cohort-2, behavioral measures were obtained in 23 LD
participants (out of 24) and 15 HD participants (out of 16)%32. We found sig-
nificant effect of ALC for five self-reported measures of feeling sedated, dizzy, high,
pleasant, and intoxication32. For summarizing subjective effects of ALC in this
study, we computed the first principal component of these five measures (sub-
jective PC accounted for 68% of variance), in ALC across both groups. We also
found HD had lower cognitive performance in five tasks: Stroop (neutral, con-
gruent, and incongruent), Symbol Digit Modalities Test, and Word Association
tasks2. To summarize individual differences in cognitive performance in HD, we
computed the first principal component of these five measures obtained during
PLC in HD (cognitive PC accounted for 50% of variance).

IFCD estimation. Prior work has shown a relatively high spatial spread of neuronal
activity relative to the stimulation locus®7:8. This evidence supports that the spatial
spread of synchronous BOLD signal is proportional to regional neuroglial activity.
Thus, we used the measure of IFCD, quantifying extent of spatial synchrony in slow
BOLD fluctuations (0.01-0.1 Hz), to index spontaneous brain activity demand. For
both cohorts, fMRI data was band-pass filtered (0.01-0.10 Hz) to remove magnetic
field drifts and to minimize the effects of physiologic noise on high-frequency
components. For excessive motion, fMRI time points that were severely affected by
motion were removed using a “scrubbing” approach® with a root mean square
signal change (DVARs) threshold of 0.5% and a framewise displacement threshold
of 0.5 mm. Remaining motion effects on fMRI time series were regressed out using
estimates of motion parameters. Pearson's correlation was calculated to assess the
strength of functional connectivity, Cj;, between voxels i and j. We define local
functional connectivity graph G = (V, E), such that brain voxels are its vertices
V=1{v1, ..., v}, and there is an edge between v; and v; if C;; is larger than 0.626:70
and if v; is part of a cluster of voxels that are spatially connected to v; (using a
surface or edge criterion). IFCD (or local functional connectivity degree) was
defined as the number of edges associated with v;. Because degree-related measures
(such as IFCD) follow an exponential distribution, we used log(IFCD) in all ana-
lyses with a semi-normal distribution (Supplementary Fig. 2) to characterize brain
activity and its associations with brain glucose metabolism (indexed by CMRglc).
For cohort-1, the average log(IFCD) from the two fMRI sessions were used in the
analyses to improve the SNR of brain activity measures. In cohort-1, we tested the
sensitivity of rPWR and rCST to IFCD threshold by also using an alternative
threshold of Cj;=0.4 and compared the results to those obtained with IFCD
threshold of Cj; = 0.6. The effects of unwanted fluctuations within the white matter
and cerebrospinal fluid were excluded from the analysis by using a mask of gray
matter for calculations of indices.

fALFF estimation. As an alternative measure of brain activity at rest (cohort-1), we
computed fALFF using 3dRSFC in AFNI"!, while regressing out motion regressors,
to quantify the relative contribution of 0.01-0.1 Hz frequency range to the fMRI
spectra. For cohort-1, the average fALFF from the two fMRI sessions were used in
the analyses to improve SNR of brain activity measures.

rPWR and rCST estimation. Voxelwise rPWR and rCST were computed by a 7/4
rad (45°) counterclockwise rotation of (mean and variance normalized) log(IFCD)
and CMRglc axes, respectively. Specifically, in a two-dimensional polar coordinate
system of standardized (whole-brain mean = 0, variance = 1) log(IFCD), z(log
(IFCD)), plotted against standardized (whole-brain mean = 0, variance = 1)
CMRglc, z(CMRglc), we define:

rPWR = Rx cos(e—g) (1)

and

rCST = Rx sin( — Z), ()

where R and 6 are radius and angle (in radians) of each brain voxel in a polar
coordinate system of z(log(IFCD)) and z(CMRglc). Alternatively, in a Cartesian
coordinate system,

rPWR
3)
rCST cosf

cosZ  sinf [z(log(lFCD)) ]
—sinj 7| | z(CMRgle) |°
This 45° counterclockwise rotation is equivalent to performing a principal component
analysis on two positively correlated variables that are, mean and variance normalized
(resulting in an equal contribution of imaging parameters into rPWR and rCST). It is
important to note that rPWR and rCST variables are orthogonal, thus it is possible for
brain regions to have high (or low) rPWR and rCST at the same time, while other
regions may be high in rCST and low in rPWR or vice versa. While rPWR captures
most of the common variance, rCST captures the reminder of the common variance
between z(log(IFCD)) and z(CMRglc). This is evident in Supplementary Fig. 3 his-
tograms, showing higher variability across regions in rPWR (capturing most of the
variance) relative to rCST. rPWR should not be confused with other uses of term
“power” in the literature such as power in electrical circuits (though they bare some
similarity), statistical power, and power in time series. Voxelwise tPWR and rCST
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were estimated for each participant in cohort-1 and each condition in cohort-2 (e.g.,
PLC and ALC, see Supplementary Fig. 9).

Network segregation index. NSI was defined to index how well a brain network
(or a region) is segregated from other brain networks (or regions), when indi-
vidual participant data for all the networks are plotted in a two-dimensional
space (e.g., Fig. 2c versus Fig. 2f). For this purpose, three parameters were
calculated. For a given network (N;), center of mass (CM;) coordinates were
calculating by averaging of each dimension across participants. For N;, average
within network distance (AWND),) was calculated by averaging the Euclidian
distance of participants data points from the CM,. For N;, average between
network distance (ABND;) was calculated by averaging the Euclidian distance
from CM; to the CMs of the rest of the networks. Finally, NSI was defined as
following, which is expected to have a F-distribution:

NSI = -———L. (4)

k-means clustering. For classifying brain regions based on the associated rPWR
and rCST indices, a k-means clustering approach’2 was used in MATLAB (The
MathWorks, Natick, MA, USA). In brief, k centroids (cluster centers) with-
Idimensions (I = 2 here for rPWR and rCST) were first randomly selected (k is a
pre-specified number). Each of the n observations (n = number of brain voxels)
was assigned to the closest centroid. The algorithm iteratively updates the
centroids’ location so that within-cluster distances to the centroid, decreases at
each iteration. Specifically, an updated cluster centroid was computed by aver-
aging the observations in each cluster. This process continued until the max-
imum number of specified iterations was reached (i =1000) or there was no
change in cluster assignments. Clustering was performed on the group-level
average maps of rPWR and rCST. Clusters did not change when the k-means
clustering process was repeated (n = 100).

Statistical parametric mapping. SPM8 was used to perform voxelwise comparisons
on rPWR and rCST indices. For the cohort-1, one-sample  tests were used to identify
regions with high and low rPWR and rCST relative to the rest of the brain. A paired ¢
test was used to identify regions that are significantly different in rCST and rPWR.
For cohort-2, a flexible factorial analysis was used to model between-subject factor of
Group (LD versus HD) and within-subject factor of Alcohol (PLC versus ALC),
where gender and smoking status were entered as covariates to control for group
differences in these variables. All effects were corrected for multiple comparisons
using cluster size correction approach (ppwg <0.01) and a cluster-forming threshold
of p <0.005. When indicated, we used a more stringent threshold (corrected at the
voxel level, ppyg < 0.01, [t| > 6) to further guide summarizing large effects.

Brain morphometry and temporal SNR. In cohort-1 (n = 28), we used 34
surface-based cortical parcellations in each hemisphere (a total of 68 regions of
interests (ROIs)) in FreeSurfer (see Supplementary Methods) to study how
brain morphometry and fMRI tSNR and FDG-PET tSNR measures are asso-
ciated with IFCD and CMRglc as well as rPWR and rCST. FreeSurfer pipeline
provides surface-based cortical thickness estimates for each of the 34 ROIs in
each hemisphere (lh.aparc.stats and rh.aparc.stats). For each bilateral ROI, we
averaged thickness measures between left and right hemispheres. We also
computed a measure of cortical distance (in the subject space before MNI
normalization), specifically, by computing the average geometrical distance
from the center-of-mass of each ROI to center-of-mass of the rest of 67 ROIs.
For each bilateral ROI, this measure was averaged between left and right
hemispheres. For fMRI, voxelwise tSNR was computed using the mean to
standard deviation ratio of the raw fMRI time series (after motion correction
and spatial normalization). For FDG-PET, voxelwise tSNR was computed
using the mean to standard deviation ratio of the dynamic FDG time series
(after motion correction and spatial normalization, acquired between 40 and
55 min, matching the length of fMRI sessions). For each subject, each tSNR
measure was averaged within each of the 34 bilateral ROIs.

Code availability. The code for estimation of metrics will be made available at
https://github.com/eshoko/ COMET.

Data availability

The authors declare that data supporting the study findings are available within the paper
and its Supplementary Information files and are available upon request. The cohort-1
dataset collected at the NIH is registered in clinicaltrials.gov under registration code:
NCT02193425 as an "early phase 1 trial".
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